Molecular Adsorbing Host•Guest (MAHG) crystals

<u>David Bardelang</u>,^a Xue Yang,^a Didier Siri,^a Didier Gigmes,^a Chunyang Li,^b Alexandre Martinez,^b Bastien Chatelet,^b Mehdi Yemloul,^b Michel Giorgi,^c Virginie Hornebecq,^d Anthony Kermagoret,^e Sophie Brasselet,^f Brice Kauffmann,^g Eric Merlet,^g Yann Ferrand,^g Xavier Bugaut^h

^aAix-Marseille Université, CNRS, ICR, Marseille, France; ^bibid, iSm2, Marseille, France; ^cibid, Centrale Marseille, Spectropole, Marseille, France; ^dibid, MADIREL, Marseille, France; ^eibid, CINAM, Marseille, France; ^fibid, Fresnel, Marseille, France; ^gUniversité de Bordeaux, CNRS, INSERM, IECB, Pessac, France; ^hUniversité de Strasbourg, CNRS, LIMA, Strasbourg, France. <u>david.bardelang@univ-amu.fr</u>

Recently, porous organic crystals (POC) based on macrocycles have shown exceptional sorption and separation properties.¹ Yet, the impact of guest presence inside a macrocycle prior to crystallization and adsorption had not been studied. We will present results about the inclusion of trimethoxybenzyl-azaphosphatrane in the macrocycle cucurbit[8]uril (CB[8]) affording *molecular* adsorbing host•guest crystals (**MAHG**, Figure 1).²

Figure 1. Host•guest complex with CB[8], packing showing 1D channels and iodine adsorption.

Not only the guest could tune the porous space of CB[8] crystals, but also unactivated **MAHG** crystals could adsorb iodine spontaneously and selectively at room temperature and atmospheric pressure. The absence of (i) heat for material synthesis, (ii) moisture sensitivity, and (iii) energy-intensive steps for pore activation are attractive attributes to produce energy-efficient porous materials. ¹H NMR and DOSY were instrumental for monitoring the H₂O/I₂ exchange and iodine-doped crystals showed markedly different second harmonic generation. Recent results will also be presented highlighting a growing diversity of what could be a new family of porous materials.

References

- 1. Zhu, H.; Chen, L.; Sun, B.; Wang, M.; Li, H.; Stoddart, J. F.; Huang, F. Nat. Rev. Chem. 2023, 7, 768-782.
- Yang, X.; Li, C.; Giorgi, M.; Siri, D.; Bugaut, X.; Chatelet, B.; Gigmes, D.; Yemloul, M.; Hornebecq, V.; Kermagoret, A.; Brasselet, S.; Martinez, A.; Bardelang, D. Angew. Chem. Int. Ed. 2022, 61, e202214039.