Annonce de séminaire : Institut Lavoisier de Versailles Vendredi 26 Avril - 11h00 Salle de conférences de l'ILV

Managing Reactivity of Hydrides in CO₂ Reduction to Formate

Louise Berben

Department of Chemistry, University of California, Davis, California 95616, United States

In this talk I will discuss the reduction of CO_2 into C-H bond containing fuels using $[Fe_4N(CO)_{12}]^-$ and related small metal carbonyl clusters as electrocatalysts. At pH 6.5 or in MeCN/H₂O (95:5), $[Fe_4N(CO)_{12}]^-$ promotes the selective formation of formate from CO^2 saturated solution at -1.2 V vs. SCE which is about 440 mV of overpotential. The intermediate hydride in this reaction is believed to be the iron-iron bridged hydride: $[H-Fe_4N(CO)_{12}]^-$ which forms via an electron transfer, proton transfer (EC) process. We have considered both thermochemical and kinetic factors that control selectivity in the reaction of $[H-Fe_4N(CO)_{12}]^-$ with substrates so that we can better understand why the Faradaic efficiency for formate is 97%, with very little H_2 produced. Results of mechanistic studies will be discussed, along with efforts in synthetic inorganic chemistry, to understand the role of the secondary coordination sphere in substrate transport.

Reduction of CO₂ to Formate by [Fe₄N(CO)₁₁(linker)]-Glassy Carbon