2D organic layers on surfaces: self-assembly, on-surface chemistry and electronic structure

S. Rangan

Understanding the basic mechanisms leading to the formation of 2D organic layers on surfaces, either via Van der Waals, ionic or covalent interactions, is a necessary step toward the development of controlled and ordered organic layers, for technological applications such as homogeneous doping of graphene or 2D organic topological insulators. Using a combination of scanning tunnel microscopy, various electron spectroscopy techniques and ab-initio calculations, we have studied several aspects of the self-assembly and reactivity of particularly interesting model systems: Zinc tetraphenylporphyrins (ZnTPP) and their derivatives, on single crystal surfaces.

Figure 1. A highly ordered kinetically trapped system: ZnTPP on Ag(100).

Figure 2. A strategy for 2D organic growth.

First, we have explored the delicate balance of forces during the molecular self-

assembly process on metal single crystal surfaces. It is shown that molecule/molecule and molecule/surface interactions, as well as accumulated surface stress, all play an important role in determining self-assembly. In particular, self-assembly can be kinetically trapped into metastable phases different from typical equilibrium outcomes (Figure 1).

Recently, in order to develop and expand a synthesis toolbox necessary for the directed growth of highly ordered 2D covalent structures (Figure 2), we have studied novel mechanisms of surface-mediated chemistry to form intra- and inter-molecular covalent bonds between ZnTPPs (and fluorinated ZnTPPs) on metal surfaces. In particular, dehydrofluorination reactions

render C-C bond formation chemo-selective as well as potentially regio-selective, if employed with a properly designed molecular precursor.